Sentiment strength detection for the social web: From YouTube arguments to Twitter praise

Mike Thelwall
University of Wolverhampton, UK
Sentiment Strength Detection with *SentiStrength*

1. Detect positive and negative sentiment strength in short informal text
 1. Develop workarounds for lack of standard grammar and spelling
 2. Harness emotion expression forms unique to MySpace or CMC (e.g., :-) or haaappppyyy!!!)
 3. Classify simultaneously as positive 1-5 AND negative 1-5 sentiment

2. Apply to MySpace comments and social issues

SentiStrength 1 Algorithm - Core

- List of 890 positive and negative sentiment terms and strengths (1 to 5), e.g.
 - ache = -2, dislike = -3, hate=-4, excruciating -5
 - encourage = 2, coolest = 3, lover = 4
- Sentiment strength is highest in sentence; or highest sentence if multiple sentences
Examples

- My legs ache.
- You are the coolest.
- I hate Paul but encourage him.

positive, negative

1, -2
3, -1
2, -4
Term Strength Optimisation

- Term strengths (e.g., ache = -2) initially fixed by a human coder
- Term strengths optimised on training set with 10-fold cross-validation
 - Adjust term strengths to give best training set results then evaluate on test set
 - E.g., training set: “My legs ache”: coder sentiment = 1,-3 => adjust sentiment of “ache” from -2 to -3.
Summary of sentiment methods

- **sentiment word strength list**
 - “miss” = +2, -2
 - **terrify** = -4

- **spelling corrected**
 - nicce -> nice

- **booster words** alter strength
 - **very** happy
 - **not** nice

- **negating words** flip emotions
 - **not** nice
 - niiiice

- **repeated letters** boost sentiment/+ve
 - niiieee

- **emoticon list**
 - :) = +2

- **exclamation marks** count as +2 unless –ve
 - hi!

- **repeated punctuation** boosts sentiment
 - good!!!

- **negative emotion ignored in questions**
 - u h8 me?
Experiments

- Development data = 2600 MySpace comments coded by 1 coder
- Test data = 1041 MySpace comments coded by 3 independent coders
- Comparison against a range of standard machine learning algorithms
Test data: Inter-coder agreement

Krippendorff’s inter-coder weighted alpha = 0.5743 for positive and 0.5634 for negative sentiment

Only moderate agreement between coders but it is a hard 5-category task

<table>
<thead>
<tr>
<th>Comparison for 1041 MySpace texts</th>
<th>+ve agreement</th>
<th>-ve agreement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coder 1 vs. 2</td>
<td>51.0%</td>
<td>67.3%</td>
</tr>
<tr>
<td>Coder 1 vs. 3</td>
<td>55.7%</td>
<td>76.3%</td>
</tr>
<tr>
<td>Coder 2 vs. 3</td>
<td>61.4%</td>
<td>68.2%</td>
</tr>
</tbody>
</table>
Results: +ve sentiment strength

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Optimal #features</th>
<th>Accuracy +/- 1 class</th>
<th>Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>SentiStrength</td>
<td>-</td>
<td>60.6%</td>
<td>96.9%</td>
</tr>
<tr>
<td>Simple logistic regression</td>
<td>700</td>
<td>58.5%</td>
<td>96.1%</td>
</tr>
<tr>
<td>SVM (SMO)</td>
<td>800</td>
<td>57.6%</td>
<td>95.4%</td>
</tr>
<tr>
<td>J48 classification tree</td>
<td>700</td>
<td>55.2%</td>
<td>95.9%</td>
</tr>
<tr>
<td>JRip rule-based classifier</td>
<td>700</td>
<td>54.3%</td>
<td>96.4%</td>
</tr>
<tr>
<td>SVM regression (SMO)</td>
<td>100</td>
<td>54.1%</td>
<td>97.3%</td>
</tr>
<tr>
<td>AdaBoost</td>
<td>100</td>
<td>53.3%</td>
<td>97.5%</td>
</tr>
<tr>
<td>Decision table</td>
<td>200</td>
<td>53.3%</td>
<td>96.7%</td>
</tr>
<tr>
<td>Multilayer Perceptron</td>
<td>100</td>
<td>50.0%</td>
<td>94.1%</td>
</tr>
<tr>
<td>Naïve Bayes</td>
<td>100</td>
<td>49.1%</td>
<td>91.4%</td>
</tr>
<tr>
<td>Baseline</td>
<td>-</td>
<td>47.3%</td>
<td>94.0%</td>
</tr>
<tr>
<td>Random</td>
<td>-</td>
<td>19.8%</td>
<td>56.9%</td>
</tr>
</tbody>
</table>
Results: -ve sentiment strength

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Optimal #features</th>
<th>Accuracy</th>
<th>Accuracy +/- 1 class</th>
<th>Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVM (SMO)</td>
<td>100</td>
<td>73.5%</td>
<td>92.7%</td>
<td>.421</td>
</tr>
<tr>
<td>SVM regression (SMO)</td>
<td>300</td>
<td>73.2%</td>
<td>91.9%</td>
<td>.363</td>
</tr>
<tr>
<td>Simple logistic regression</td>
<td>800</td>
<td>72.9%</td>
<td>92.2%</td>
<td>.364</td>
</tr>
<tr>
<td>SentiStrength</td>
<td>-</td>
<td>72.8%</td>
<td>95.1%</td>
<td>.564</td>
</tr>
<tr>
<td>Decision table</td>
<td>100</td>
<td>72.7%</td>
<td>92.1%</td>
<td>.346</td>
</tr>
<tr>
<td>JRip rule-based classifier</td>
<td>500</td>
<td>72.2%</td>
<td>91.5%</td>
<td>.309</td>
</tr>
<tr>
<td>J48 classification tree</td>
<td>400</td>
<td>71.1%</td>
<td>91.6%</td>
<td>.235</td>
</tr>
<tr>
<td>Multilayer Perceptron</td>
<td>100</td>
<td>70.1%</td>
<td>92.5%</td>
<td>.346</td>
</tr>
<tr>
<td>AdaBoost</td>
<td>100</td>
<td>69.9%</td>
<td>90.6%</td>
<td>-</td>
</tr>
<tr>
<td>Baseline</td>
<td>-</td>
<td>69.9%</td>
<td>90.6%</td>
<td>-</td>
</tr>
<tr>
<td>Naïve Bayes</td>
<td>200</td>
<td>68.0%</td>
<td>89.8%</td>
<td>.311</td>
</tr>
<tr>
<td>Random</td>
<td>-</td>
<td>20.5%</td>
<td>46.0%</td>
<td>.010</td>
</tr>
</tbody>
</table>
Example differences/errors

- *THINK* 4 THE ADD
 - Computer (1,-1), Human (2,-1)

- 0MG 0MG 0MG 0MG 0MG 0MG 0MG 0MG 0MG!
 - N33N3R!
 - Computer (2,-1), Human (5,-1)
Application - Evidence of emotion homophily in MySpace

- Automatic analysis of sentiment in 2 million comments exchanged between MySpace friends
- Correlation of 0.227 for +ve emotion strength and 0.254 for –ve
- People tend to use similar but not identical levels of emotion to their friends in messages
SentiStrength 2

Sentiment analysis programs are typically domain-dependant.

SentiStrength is designed to be quite generic:
- Does not pick up domain-specific non-sentiment terms, e.g., G3.

SentiStrength 2.0 has extended negative sentiment dictionary:
- In response to weakness for negative sentiment.

6 Social web data sets

To test on a wide range of different Social Web text
SentiStrength 2 (unsupervised) tests

Social web sentiment analysis is less domain dependant than reviews

<table>
<thead>
<tr>
<th>Data set</th>
<th>Positive Correlation</th>
<th>Negative Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>YouTube</td>
<td>0.589</td>
<td>0.521</td>
</tr>
<tr>
<td>MySpace</td>
<td>0.647</td>
<td>0.599</td>
</tr>
<tr>
<td>Twitter</td>
<td>0.541</td>
<td>0.499</td>
</tr>
<tr>
<td>Sports forum</td>
<td>0.567</td>
<td>0.541</td>
</tr>
<tr>
<td>Digg.com news</td>
<td>0.352</td>
<td>0.552</td>
</tr>
<tr>
<td>BBC forums</td>
<td>0.296</td>
<td>0.591</td>
</tr>
<tr>
<td>All 6</td>
<td>0.556</td>
<td>0.565</td>
</tr>
</tbody>
</table>
Why the bad results for BBC?

- Long texts, mainly negative, expressive language used, e.g.,
 - David Cameron must be very happy that I have lost my job.
 - It is really interesting that David Cameron and most of his ministers are millionaires.
 - Your argument is a joke.
SentiStrength vs. Machine learning for Social Web texts

• Machine learning performs a bit better overall (7 out of 12 data sets/+ve or negative)
 • Logistic Regression with trigrams, including punctuation and emoticons; 200 features
• But has “domain transfer” and “face validity” problems for *some* tasks
SentiStrength software

- Versions: Windows, Java, live online (sentistrength.wlv.ac.uk)
- German version (Hannes Pirker)
- Variants: Binary (positive/negative), trinary (positive/neutral/negative) and scale (-4 to +4)
- Sold commercially - & purchasers converting to French, Spanish, Portuguese, & ?
CYBEREMOTIONS = data gathering + complex systems methods + ICT outputs

Collective Emotions in Cyberspace

Sentistrength
Application – sentiment in Twitter events

- Analysis of a corpus of 1 month of English Twitter posts
- Automatic detection of spikes (events)
- Sentiment strength classification of all posts
- Assessment of whether sentiment strength increases during important events

Automatically-identified Twitter spikes

Proportion of tweets mentioning keyword

9 Feb 2010 - 9 Mar 2010
Increase in –ve sentiment strength

Proportion of tweets mentioning Chile
Increase in \textit{\textbf{–ve}} sentiment strength

Proportion of tweets mentioning the Oscars

Av. +ve sentiment strength
Just subj.

Av. -ve sentiment strength
Just subj.
Sentiment and spikes

Analysis of top 30 spiking events

- Strong evidence ($p=0.001$) that *higher volume hours have stronger negative sentiment than lower volume hours*

- *Insufficient evidence* ($p=0.014$) that higher volume hours have different positive sentiment strength than lower volume hours

=> Spikes are typified by increases in *negativity*
But there is plenty of positivity if you know where to look!
YouTube Video comments

- Short text messages left for a video by viewers
- Up to 1000 per video accessible via the YouTube API
- A good source of social web text data
Sentiment in YouTube comments

Predominantly positive comments
Trends in YouTube comment sentiment

+ve and –ve sentiment strengths negatively correlated for videos (Spearman’s rho -0.213)

comments on a video correlates with –ve sentiment strength (Spearman’s rho 0.242, p=0.000) and negatively correlates with +ve sentiment strength (Spearman’s rho -0.113) — negativity drives commenting even though it is rare!

Qualitative: Big debates over religion
 - No discussion about aging rock stars!
Conclusion

Automatic classification of sentiment strength is possible for the social web – even unsupervised!

- ...not good for longer, political messages?
- Hard to get accuracy much over 60%?
- Can identify trends through automatic analysis of sentiment in millions of social web messages
Bibliography
