BagBoo: Bagging the Gradient Boosting

3'din RR (track | and II)
1stin nDCG (track Il) and 2"d in nDCG (track |)

Dmitry Pavlov and Cliff Brunk
aka JOKER
aka team_404
Yandex Labs (labs.yandex.com)

{dmitry-pavlov,clifff@yandex-team.ru

il




Yandex

Yandex.ru Yandex.com

Leading search engine in Russia w/65%+ search
market share

Labs office in Palo Alto, CA

We are doing a lot of technology innovations

... and We are hiring!

Come chat with us or send a message




Bagging (Breiman)

« Ensemble of models

— Sampling data
— Voting models

« Random Forest

— Models are functions of iid random vectors
— Assume Model = Tree WLOG from now on

* Nice properties

— Variance reduction
— Resistance to overfitting
— Efficient parallelizable computation

il



Gradient Boosting (Friedman)

« Ensemble of models

— Each next model learned to optimize residual error
— Weight in the linear combination are optimized
— Randomness/Stochastisity similar to Bagging

* Nice properties
— Bias reduction

« Hard to parallelize




BagBoo: combined Bagging and Boosting

« Combine the best of both worlds:

— get highly parallelizable algorithm with bias and variance
reduction properties

1. Input: Training data D, Nbag and Nboo iter.
2. Output: Random Forest of Nbag x Nboo trees
3. For i=1to Nbag do

D[i] := SampleData(D); # samp. feats and records
BTI[i] := BoostedTree(D][i], Nboo);
EndFor

4. Output: additive model \sum_i { BT[i] }

il




BagBoo: highly parallelizable algorithm

Accurate

— Excellent results in contests and on TREC benchmarks
Fast

— Can train many trees fast
Gotchas

— need to control learning rate

— winning the contest with many trees is great but can be unrealistic
in practice

The idea has been studied before

— KDD Cup’09,
— P. Melville, R. Mooney et al,
— Daria Sorokina’s Additive Groves




Data Used for BagBoo Evaluation

Data Set Queries NRows N N Label Distr.
Features Labels

1TD2004 75 74,146 64 0/1 1.5% 1's

MQ2007 1,692 69,623 46 0/1/2 20% 1’s,
6% 2's

IMAT2009 9,124 97,290 Multi 26% non-0s
0.4

Yahoo! 19,944 473,174 Multi 26% Os
Chal. 0..4




Performance of BagBoo on standard

IR/ TREC benchmarks

Table 2: Average cross-validated NDCG1—-5 and M AP for TD2004 data set in LETORS3.0 collection. Numbers
in bold found represent the winning method for the metric in a given column. BagBoo wins in all metrics.

BagBoo fits over 1.1 million trees, which pure boosting can only afford in estimated 48 days on a single CPU,
hence boosting performance is not quoted.

Method NDCG@l NDCG@2 NDCG@3 NDCG@4 NDCGa@s5 MAP
BagBoo 50.67 44.00 40.80 39.86 38.98 24.99
Bagging 45.33 44.00 38.88 37.15 34.48 21.73
Boosting - - - - - -
BoltzRank 47.67 41.33 39.02 37.57 36.35 23.90
ListNet 36.00 34.67 35.73 34.69 33.25 22.31
FRank 49.33 40.67 38.75 35.81 36.29 23.88
AdaRank. NDCG 42.67 38.00 36.88 35.24 35.14 19.36
AdaRank. MAP 41.33 39.33 37.57

RankSVM 41.33

34.67

34.67

36.83 36.02 21.89
34.10 ' 22.37




BagBoo vs Bagging vs Boosting:
Performance and Time Tradeoff

Mean Squared Error
Modeling Time

=)
|

Bag Size = 1000 / Boost Size

1000

Figure 1: Model accuracy (mean squared error) and

offline/modeling time as a function of NBag and
N Boo for fixed T'= NBag - N Boo

il




Dependence of performance on learning
rate (thanks to G. Ridgeway)

Squared error

0.070.005
L

I
4000 6000

lterations

Figure 3: Out-of-sample predictive performance by number of iterations and
shrinkage. Smaller values of the shrinkage parameter offer improved predictive
performance, but with decreasing marginal improvement.

il




BagBoo params for ICML

Bags=600

Boosts=500

Tree Depth=12 (!)

Min_Leaf Support=10

Bag Feature Rate = Doc Rate = 100%

Boost Feature Rate = 80% Doc Rate = 100%
Learning rate=0.2 (!)

2"d track: transfer “from” data 1 : 7 “to” data weight

il



Many things we tried that didn’t quite
work...

Engineering new features, e.g. products of existing
features

Remapping the labels — which makes sense for a
point-wise method

Averaging results of various successful ideas
Median vs Mean, removing the outlier trees
Using track Il data for track |

Building different models for Navigational and Non-
navigational queries




Cross-validation i1s a must

« Typical flaw: evaluation on the holdout sample

* Very easy to overfit
— Especially if it is small
« EXxpensive

— Yes! (unless you have a cluster)
— But ultimately well worth it

— Sitill affordable in 3 months time span the competition
was ran




Grain of Salt

o Offline vs Online

— Deal with the top N documents per query vs Billions in
real-life

— Offline results can be misleading (Web is 90%-+ junk or
Irrelevant)

— The model ranking 24 might turn out best in online
retrieval




Acknowledgements = Big Thanks To

» QOrganizers for a wonderful challenge
— and giving us internal ID team_404 ;-)

* Yandex team for support, discussions
— and enduring our hogging the cluster

 All of you for coming and listening




