
BagBoo: Bagging the Gradient Boosting

3rd in RR (track I and II)

1st in nDCG (track II) and 2nd in nDCG (track I)

Dmitry Pavlov and Cliff Brunk

aka JOKER

aka team_404

Yandex Labs (labs.yandex.com)

{dmitry-pavlov,cliff}@yandex-team.ru



Yandex

• Yandex.ru Yandex.com

• Leading search engine in Russia w/65%+ search 

market share

• Labs office in Palo Alto, CA

• We are doing a lot of technology innovations

• … and We are hiring!

• Come chat with us or send a message



Bagging (Breiman)

• Ensemble of models

– Sampling data

– Voting models

• Random Forest

– Models are functions of iid random vectors

– Assume Model = Tree WLOG from now on

• Nice properties

– Variance reduction

– Resistance to overfitting

– Efficient parallelizable computation



Gradient Boosting (Friedman)

• Ensemble of models

– Each next model learned to optimize residual error

– Weight in the linear combination are optimized

– Randomness/Stochastisity similar to Bagging

• Nice properties

– Bias reduction

• Hard to parallelize



BagBoo: combined Bagging and Boosting

• Combine the best of both worlds:

– get highly parallelizable algorithm with bias and variance 

reduction properties

1. Input: Training data D, Nbag and Nboo iter.

2. Output: Random Forest of Nbag x Nboo trees

3. For i=1 to Nbag do

D[i] := SampleData(D); # samp. feats and records

BT[i] := BoostedTree(D[i], Nboo);

EndFor

4. Output: additive model \sum_i { BT[i] }



BagBoo: highly parallelizable algorithm 

• Accurate

– Excellent results in contests and on TREC benchmarks

• Fast

– Can train many trees fast 

• Gotchas

– need to control learning rate

– winning the contest with many trees is great but can be unrealistic 
in practice

• The idea has been studied before

– KDD Cup’09, 

– P. Melville, R. Mooney et al, 

– Daria Sorokina’s Additive Groves



Data Used for BagBoo Evaluation

Data Set Queries N Rows N 

Features

N 

Labels

Label Distr.

TD2004 75 74,146 64 0/1 1.5% 1’s

MQ2007 1,692 69,623 46 0/1/2 20% 1’s, 

6% 2’s

IMAT2009 9,124 97,290 245 Multi 

0..4

26% non-0s

Yahoo! 

Chal.

19,944 473,174 704 Multi 

0..4

26% 0s



Performance of BagBoo on standard 

IR/TREC benchmarks



BagBoo vs Bagging vs Boosting: 

Performance and Time Tradeoff



Dependence of performance on learning 

rate (thanks to G. Ridgeway)



BagBoo params for ICML

• Bags=600

• Boosts=500

• Tree Depth=12 (!)

• Min_Leaf_Support=10

• Bag Feature Rate = Doc Rate = 100%

• Boost Feature Rate = 80% Doc Rate = 100%

• Learning rate=0.2 (!)

• 2nd track: transfer “from” data 1 : 7 “to” data weight



Many things we tried that didn’t quite 

work…

• Engineering new features, e.g. products of existing 
features

• Remapping the labels – which makes sense for a 
point-wise method

• Averaging results of various successful ideas

• Median vs Mean, removing the outlier trees

• Using track II data for track I

• Building different models for Navigational and Non-
navigational queries



Cross-validation is a must

• Typical flaw: evaluation on the holdout sample

• Very easy to overfit

– Especially if it is small

• Expensive

– Yes! (unless you have a cluster)

– But ultimately well worth it 

– Still affordable in 3 months time span the competition 

was ran



Grain of Salt

• Offline vs Online

– Deal with the top N documents per query vs Billions in 

real-life

– Offline results can be misleading (Web is 90%+ junk or 

irrelevant)

– The model ranking 24 might turn out best in online 

retrieval



Acknowledgements = Big Thanks To

• Organizers for a wonderful challenge 

– and giving us internal ID team_404 ;-)

• Yandex team for support, discussions 

– and enduring our hogging the cluster 

• All of you for coming and listening


